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Network Layers 815 Network Layers 16-23 Network Layers 24-31

https://www.deepspeed.ai/tutorials/pipeline/




DATA PARALLELISM

e p e N N ™
Data parallelism enables distributed training by
communicating gradients before the optimizer step Model Model Model
to make sure that parameters of all model replicas are - N N -
updated using exactly the same set of gradients, and e = B &
hence model replicas can stay consistent across iterations. oo erur || oeuz || erus |

dataset



1. Each device holds a full copy of
the model

2. Data are split on multiple GPUs
(single or multi-node)

3. After some backpropagation
steps, the results are are
synchronized to avoid
convergence issues




7 PYTORCH DDP (Distributed Data Parallel)

@ @ DistributedSampler

DatalLoader
InputBatch

PYTORCH
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. m@ PYTORCH DDP (Distributed Data Parallel)

Vo +V4+ YV, +V, | é Vo +V41+V, +V,

synchronize

Vo +Vi+V, +V, Vo +Vi+ VY, +V; gradients
aCross

model replicas

PYTORCH




from torch.nn.parallel import DistributedDataParallel as DDP °
from torch.utils.data.distributed import DistributedSampler PYTORCH

{## Initialize the process group
rank, local_rank, world_size, local_size, num_workers = get_resouzrces()
dist.init_process_group(“nccl"”, rank=rank, world_size=world_size)

{## Data Loading

train_sampler = DistributedSampler(dataset=train_dataset, rank = rank, num_replicas = world_size)
train_loader = torch.utils.data.Dataloader(train_dataset, sampler = train_sampler,
batch_size=batch_size)

i## Model preparation for Training
device = torch.device("cuda:3}%".format(local_rank))
torch.cuda.set_device(local_rank)

model.to(device)
DDP (model, device_ids=[local_rank], output_device=local_rank)

model
model



PYTORCH

How to launch PyTorch DDP code

torchrun --nnodes=2
--nproc_per_node=8
--rdzv_1id=100
--rdzv_backend=c10d
--rdzv_endpoint=$MASTER_ADDR:29400\
my_ddp_training.py

Here torchrun will launch 8 processes and invoke my_ddp_tfraining.py on each process on the node
itis launched on



- (
ICE PARALLELIS

Sequence Parallelism (SP) is a distributed fraining technique used to
split long input sequences across multiple GPUs, when the sequence length is too long
for a single GPU's memory.

For example, if we have 4 GPUs, instead of putting all 4096 tokens on one single GPU, SP
splits the sequence into 1024 tokens per GPU.

Can be seen as a sort of data parallelism specific for LLMs use case.



A PARALLEL

_ . W%

With DDP each device has
a copy of the entire model

@

when the model exceed the single
device memory we need something
more sophisticated
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rmined by

MODEL STATES RESIDUAL STATES
' Parameters ' Activations
' Gradients ' Temporary buffers
Optimizer states (such as momentum ' Unusable fragmented memory

and variances in Adam )

+ precision, batch size,...


https://arxiv.org/pdf/2101.06840

Consider Lliama 7B :

b

TIMATION

Full-Precision : fp32 (4 bytes )

Half-Precision : fp16 or bf16 ( 2 bytes)

Params
Activation
Gradients
Optimizer
TOT

7B x4
7B x4
7B x4
7Bx4x2

28 GB
28 GB
28 GB
56 GB
140 GB

Params
Activation
Gradients
Optimizer
TOT

/Bx2

/Bx2

/Bx2
7Bx2x2

14 GB
14 GB
14 GB
28 GB
70 GB

In Leonardo we have A100 GPUs with 64 GB each -> OoM error!



1 NAVESOLUTIONS o Outof Memory prolem
) M‘e“mbry.'pr

1. Lower the precision :

double ( 64 bit ) > single ( 32bit ) > half { 16bit )

2. Quantization :

INt8 ( Integer Quantization )
4-bit Quantization ( QLoRA, ... )

BUT it impacts the performance, loosing information during the training



MODEL SHARDING

Model sharding is a technique for distributed training
that divides a model's parameters, gradients, and
optimizer states across multiple GPUs or nodes.

This approach is particularly beneficial for training

large models that cannot fit entirely into the

memory of a single GPU. S

BRUy BPY, BPUy.

m Parameters Gradients 1 Optimizer States



/

DDP training:

Epuy gpy;

BPUy,

« each worker (GPU) owns a replica of the entire model. Baseline

* it uses all-reduce to sum up only the gradients over
different workers, (but the model weights and
optimizer states are replicated across all workers)

\_ %

Model Sharding, across DDP ranks,
! i i shard either:

Pﬂr*s*p
« model parameters,

« optimizer states

m Parameters . Gradients = Optimizer States )
« gradients

\

)
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Accelerate

DeepSpeed

Olmo-core

W
®
O,



* Accelerate -

Q. Search documentation Ctrl+K Accelerate iS an HF |ibra ry
S s Ja s A R that enables running the same PyTorch
TRAINING code across any distributed configuration

Gradient accumulation

by adding just few lines of code.

Local SGD

Low precision (FP8) training

Deepspeed “In short, training and inference at scale
e i made simple, efficient and adaptable.”

DDP Communication Hooks
Fully Sharded Data Parallel
Megatron-LM c -
https://huggingface.co/docs/accelerate/index

Amazon SageMaker



config.yaml files

compute_environment: LOCAL_MACHINE

debug: false

distributed_typé: FSDP

downcast_bf16: 'no'

—cpo—affinity: false

fsdp_config:

£ Wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_cpu_ram_efficient_loading: false
fsdp_forward_prefetch: true
fsdp_offload_params: false
fsdp_sharding strategy: FULL_SHARD
fsdp_state_dict_type: SHARDED_STATE_DICT
fsdp_sync_module_states: false
fsdp_use_orig _params: true

machine_rank: @

main_training function: main

mixed_precision: bflé

num_machines: 1

num_processes: 4

rdzv_backend: static

same_network: true

tpu_env: []

tpu_use_cluster: false

tpu_use_sudo: false

use cpu: false

compute_environment: LOCAL_MACHINE

debug: false
distributed_type: DEEPSPEED
down —‘no”
deepspeed_config:

I ipping: @.3
gradient_accumulation_steps: 1
offload_optimizer_device: none
offload_param_device: none
zero3_init_flag: true
zero3_save_16bit _model: true
zero_stage: 3

machine_rank: @
main_training_function: main
mixed_precision: bflé6
num_machines: 2
num_processes: 8
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false




To launch the training with the new Accelerate configuration performing distributed training

it will be enough to run

accelerate launch --config file config_accelerate.yaml my_script.py <py_args>

In SLURM it becomes accelerate launch \

--multi_gpu \

--num_machines $NNODES \
--num_processes $WORLD_SIZE \
--main_process_ip "$MASTER_ADDR" \
--main_process_port $MASTER_PORT \
--machine_rank $SLURM_PROCID \
--rdzv_backend c10d \

--config file config_accelerate.yaml
my_script.py <py_args>



Fine-Tuning of Llama3.1-7B

NUM NODES NUM GPUS TRAININGTIME  SPEED UP

1 1 3884 s 1

1 2 1925s

1 4 954 s

2 8 602s 6.45

Fine-Tuning of Llama2-70B

NUM NODES NUM GPUS TRAININGTIME  SPEED UP

1 3 OoM _
1 4 246,2 min 1
2 8 136 min 1.8



MODEL PARALLELISM

Model Parallelism is a technique used to split a neural

network across multiple GPUs or nodes where

different GPUs handle different parts of the model.

Data Parallel Rank 0
Pipeline Stage O Pipeline Stage 1 Pipeline Stage 2 Pipeline Stage 3

g
2

1 1 ﬁfl 1111

Data Parallel Rank 1




que

Pipeline Parallelism - Vertical

Fipeline Parallelism (PP)

The model is split at layer level on multiple gpus T T
(i.e. only one or several layers are stored in the same GPU). I—I—I-I—I—Iql—H
To avoid big pipeline bubbles each gpu process a portion of the

batch (micro batch)

Tensor Parallelism - Horizontal Tensor Parallelism (TP)

Device set 1

Each tensor is split up into multiple chunks saved on

different GPUs. During processing each shard gets processed

separately. Then, the results are synchronized at the end of the Device set 2
step.




Device 3

Device 2

Device 1

Device 0

[1] https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053

Loss

P
F: - Bs
§ .
Fz b Bz
§ !
Fi - B,
i i B 5
Fo B.

Gradients

Pipeline bubbles

A

-

Fo | Bo

F.

Fo

Time

B.

[2] https://arxiv.org/pdf/2104.04473
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Only ONE GPU running at time!!


https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://arxiv.org/pdf/2104.04473

Device 3

Device 2

Device 1

Device 0

[1] https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053

Loss

P
F: - Bs
§ .
Fz b Bz
§ !
Fi - B,
i i B 5
Fo B.

Gradients

Pipeline bubbles

A

-

Fo | Bo

F.

Fo

Time

B.

[2] https://arxiv.org/pdf/2104.04473

—

B.

FIRLE[T

B.

Only ONE GPU running at time!!


https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://arxiv.org/pdf/2104.04473

They introduce the idea of microbatches

1 batch with 8 independent microbatches

A

( \ __
Device 1 112 |3 | 4 9 10111213141516
Device 2 2 |a|4]|s5 | 510111213141516
Device 3 3|4 |5]|6 9/10111213141516 H
Device 4 4|5 |67 g 1|}i|-1213141515=ﬁ

Time ——— Devices idle
B Forward Pass Backward Pass

.. and there is much more literature on how to reduce pipeline bubbles

[1] https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
[2] https://arxiv.org/pdf/2104.04473
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Row-wise

GPU 1 . *

GPU 2 . *




Transformer block
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[1] https://github.com/huggingface/transformers/issues/10321#issuecomment-783543530
[2] https://arxiv.org/pdf/2104.04473
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Trying to scale TP past the number of GPUs on a single node ( TP>4 in our case) forces
to use lower-bandwidth network communication (intra-node), which can significantly
Impair performance.

Communication Bandwidth by Number of Nodes (size=256MB)
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https://arxiv.org/pdf/2104.04473
Transformer layer #1 Transformer layer #2

Tensor MP partition #2

\—-_.~,_.—-_.._...__..__.—..,_...._,-~.

\ Pipeline MP partition #1

Tensor MP partmon #2

\ﬂ“-._,"‘.ﬂnd-‘-\.’-“‘*-

\ Pipeline MP partition #2 )

Figure 2: Combination of tensor and pipeline model parallelism (MP) used in this work for transformer-based models.

Communications:

TP :

What : All-Gather (forward pass for activations) + All-Reduce (backward pass for gradients).
When : Every layers

TP <= num_gpus_per_node!!

PP:
What : Send/Recv
When : Once per forward/backward pass per pipeline stage per mini-batch.



Megatron—LM / Nemo (NV'D'A) https://github.com/NVIDIA/Megatron-LM
https:/github.com/NVIDIA/NeMo

@ DeepSpeed https://huggingface.co/docs/transformers/v4.19.2/en/parallelism
@ ColossalAl https://colossalai.org/
@ Nanotron https://gith m/huggingface/nanotron
@ vLLM https://docs.vllm.ai/en/latest/


https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/NeMo
https://huggingface.co/docs/transformers/v4.19.2/en/parallelism
https://colossalai.org/
https://github.com/huggingface/nanotron
https://docs.vllm.ai/en/latest/

Size #gpus TP PP GBS MBS Avg Tflops MaxTflops
8B 8 4 2 512 1 160 162

8B 16 4 2 512 1 155 158

8B 16 4 2 512 2 160 163

8B 32 4 2 512 1 144 147

8B 32 4 2 512 2 149 152

8B 64 4 2 512 2 121 136

8B 128 4 2 512 2 109 113

8B 256 4 2 512 1 79 83

8B 256 4 2 1024 1 100 109



Size
8B
8B
8B
8B
32B
32B
32B
70B

#gpus

16
16
32
64
64
128
128

A4

-
o

A b B B b~ b b

16
16
16
16

GBS
512
512
512
512
512
1024
1024
1024

MBS

_) A a a NN | A

Avg Tflops
160

155

160

149

110

114

110

96

Max Tflops
162
158
163
152
115
116
111
114 ~~
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e HF UltraScale Playbook :
https://huggingface.co/spaces/nanotron/ultrascale-playbook

* Megatron-LM papers:
https://arxiv.org/pdf/2104.04473

* The official websites/documentations of Pytorch DDP, HF Accelerate, ecc ...



https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://arxiv.org/pdf/2104.04473

Thank you
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