
How to parallelize
Large Scale Language Models
Laura Cavalli – CINECA
l.cavalli@cineca.it

15/12/2015

Training AI models evolution during time

DRAWBACKS + WHY PARALLEL TOOLS IN AI?

Data

Parallelism

Model

Sharding

Model

Parallelism

https://colossalai.org/docs/concepts/paradigms_of_parallelism/ https://www.deepspeed.ai/tutorials/pipeline/

DIFFERENT TYPES OF PARALLELISM

DATA PARALLELISM

Data parallelism enables distributed training by

communicating gradients before the optimizer step

to make sure that parameters of all model replicas are

updated using exactly the same set of gradients, and

hence model replicas can stay consistent across iterations.

Data Parallelism – How it works

1. Each device holds a full copy of

the model

2. Data are split on multiple GPUs
(single or multi-node)

3. After some backpropagation
steps, the results are are

synchronized to avoid
convergence issues

PYTORCH DDP (Distributed Data Parallel)

PYTORCH

PYTORCH DDP (Distributed Data Parallel)

PYTORCH

PYTORCH DDP (Distributed Data Parallel)

PYTORCH

PYTORCH DDP (Distributed Data Parallel)

PYTORCH

Ring
ALL-REDUCE

synchronize
gradients

across
model replicas

from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler

Initialize the process group
rank, local_rank, world_size, local_size, num_workers = get_resources()
dist.init_process_group("nccl", rank=rank, world_size=world_size)

...

Data Loading
train_sampler = DistributedSampler(dataset=train_dataset, rank = rank, num_replicas = world_size)
train_loader = torch.utils.data.DataLoader(train_dataset, sampler = train_sampler,
batch_size=batch_size)

...

Model preparation for Training
device = torch.device("cuda:{}".format(local_rank))
torch.cuda.set_device(local_rank)

model = model.to(device)
model = DDP(model, device_ids=[local_rank], output_device=local_rank)

PYTORCH

How to implement it with PYTORCH DDP

PYTORCH

How to implement it with PYTORCH DDP

torchrun --nnodes=2 \
--nproc_per_node=8 \
--rdzv_id=100 \
--rdzv_backend=c10d \
--rdzv_endpoint=$MASTER_ADDR:29400\
my_ddp_training.py

How to launch PyTorch DDP code

Here torchrun will launch 8 processes and invoke my_ddp_training.py on each process on the node
it is launched on

Sequence Parallelism (SP) is a distributed training technique used to
split long input sequences across multiple GPUs, when the sequence length is too long
for a single GPU's memory.

For example, if we have 4 GPUs, instead of putting all 4096 tokens on one single GPU, SP
splits the sequence into 1024 tokens per GPU.

Can be seen as a sort of data parallelism specific for LLMs use case.

bonus : SEQUENCE PARALLELISM

Main drawback of DATA PARALLELISM

With DDP each device has

a copy of the entire model

when the model exceed the single

device memory we need something
more sophisticated

RESIDUAL STATES

[1] https://arxiv.org/pdf/2101.06840

Gradients

Parameters

Optimizer states (such as momentum

and variances in Adam)

Temporary buffers

Activations

Unusable fragmented memory

MODEL STATES

LLM memory footprint determined by:

+ precision, batch size,...

https://arxiv.org/pdf/2101.06840

LLM MEMORY FOOTPRINT EXTIMATIONS

Consider Llama 7B :

In Leonardo we have A100 GPUs with 64 GB each -> OoM error!

Full-Precision : fp32 (4 bytes)

Params 7B x 4 28 GB

Activation 7B x 4 28 GB

Gradients 7B x 4 28 GB

Optimizer 7B x 4 x 2 56 GB

TOT 140 GB

Half-Precision : fp16 or bf16 (2 bytes)

Params 7B x 2 14 GB

Activation 7B x 2 14 GB

Gradients 7B x 2 14 GB

Optimizer 7B x 2 x 2 28 GB

TOT 70 GB

NAIVE SOLUTIONS to Out of Memory problem

1. Lower the precision :

double (64 bit) → single (32bit) → half (16bit)

2. Quantization :

int8 (Integer Quantization)

4-bit Quantization (QLoRA, …)

BUT it impacts the performance, loosing information during the training

MODEL SHARDING

Model sharding is a technique for distributed training
that divides a model's parameters, gradients, and
optimizer states across multiple GPUs or nodes.
This approach is particularly beneficial for training
large models that cannot fit entirely into the
memory of a single GPU.

FSDP and ZeRO Stage 3

DDP training :

• each worker (GPU) owns a replica of the entire model.
• it uses all-reduce to sum up only the gradients over

different workers, (but the model weights and
optimizer states are replicated across all workers)

Model Sharding, across DDP ranks,
shard either:

• model parameters,
• optimizer states
• gradients

12/18/2025 20

FSDP and ZeRO Stage 3

12/18/2025 21

FSDP and ZeRO Stage 3

All - Gather

12/18/2025 22

FSDP and ZeRO Stage 3

12/18/2025 23

TOOLS FOR MODEL SHARDING

1

2

3

Accelerate

DeepSpeed

Olmo-core

12/18/2025 24

ACCELERATE by

Accelerate is an HF library
that enables running the same PyTorch

code across any distributed configuration
by adding just few lines of code.

“In short, training and inference at scale
made simple, efficient and adaptable.”

https://huggingface.co/docs/accelerate/index

12/18/2025 25

Examples of config.yaml files

12/18/2025 26

How to launch it

To launch the training with the new Accelerate configuration performing distributed training

it will be enough to run

accelerate launch --config_file config_accelerate.yaml my_script.py <py_args>

In SLURM it becomes accelerate launch \
--multi_gpu \
--num_machines $NNODES \
--num_processes $WORLD_SIZE \
--main_process_ip "$MASTER_ADDR" \
--main_process_port $MASTER_PORT \
--machine_rank $SLURM_PROCID \
--rdzv_backend c10d \
--config_file config_accelerate.yaml
my_script.py <py_args>

12/18/2025 27

Results

NUM NODES NUM GPUS TRAINING TIME SPEED UP

1 1 3884 s 1

1 2 1925 s 2

1 4 954 s 4

2 8 602 s 6.45

Fine-Tuning of Llama3.1-7B

NUM NODES NUM GPUS TRAINING TIME SPEED UP

1 3 OoM _

1 4 246,2 min 1

2 8 136 min 1.8

Fine-Tuning of Llama2-70B

12/18/2025 28

MODEL PARALLELISM

Model Parallelism is a technique used to split a neural
network across multiple GPUs or nodes where
different GPUs handle different parts of the model.

12/18/2025 29

Model Parallelism Techniques

Pipeline Parallelism - Vertical

Tensor Parallelism - Horizontal

The model is split at layer level on multiple gpus
(i.e. only one or several layers are stored in the same GPU).
To avoid big pipeline bubbles each gpu process a portion of the
batch (micro batch)

Each tensor is split up into multiple chunks saved on
different GPUs. During processing each shard gets processed
separately. Then, the results are synchronized at the end of the
step.

12/18/2025 30

Naïve PIPELINE PARALLELISM

[1] https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
[2] https://arxiv.org/pdf/2104.04473

Pipeline bubbles

Only ONE GPU running at time!!

https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://arxiv.org/pdf/2104.04473

12/18/2025 31

Naïve PIPELINE PARALLELISM

[1] https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
[2] https://arxiv.org/pdf/2104.04473

Pipeline bubbles

Only ONE GPU running at time!!

https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://arxiv.org/pdf/2104.04473

12/18/2025 32

PIPELINE PARALLELISM

[1] https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
[2] https://arxiv.org/pdf/2104.04473

… and there is much more literature on how to reduce pipeline bubbles

They introduce the idea of microbatches

1 batch with 8 independent microbatches

https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
https://arxiv.org/pdf/2104.04473

12/18/2025 33

Idea behind TENSOR PARALLELISM

12/18/2025 34

TENSOR PARALLELISM

[1] https://github.com/huggingface/transformers/issues/10321#issuecomment-783543530
[2] https://arxiv.org/pdf/2104.04473

GPU 0

GPU 1

Transformer block

https://github.com/huggingface/transformers/issues/10321#issuecomment-783543530
https://github.com/huggingface/transformers/issues/10321#issuecomment-783543530
https://github.com/huggingface/transformers/issues/10321#issuecomment-783543530
https://arxiv.org/pdf/2104.04473

12/18/2025 35

Drawback of TP

Trying to scale TP past the number of GPUs on a single node (TP>4 in our case) forces
to use lower-bandwidth network communication (intra-node), which can significantly
impair performance.

12/18/2025 36

TENSOR or PIPELINE PARALLELISM

Communications :

TP :
What : All-Gather (forward pass for activations) + All-Reduce (backward pass for gradients).
When : Every layers
TP <= num_gpus_per_node!!

PP :
What : Send/Recv
When : Once per forward/backward pass per pipeline stage per mini-batch.

https://arxiv.org/pdf/2104.04473

12/18/2025 37

Model Parallelism Libraries

1

2

Megatron-LM / Nemo (NVIDIA) https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/NeMo

3

4

DeepSpeed https://huggingface.co/docs/transformers/v4.19.2/en/parallelism

ColossalAI https://colossalai.org/

Nanotron https://github.com/huggingface/nanotron

5 vLLM https://docs.vllm.ai/en/latest/

https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/NeMo
https://huggingface.co/docs/transformers/v4.19.2/en/parallelism
https://colossalai.org/
https://github.com/huggingface/nanotron
https://docs.vllm.ai/en/latest/

12/18/2025 38

Size #gpus TP PP GBS MBS Avg Tflops Max Tflops

8B 8 4 2 512 1 160 162

8B 16 4 2 512 1 155 158

8B 16 4 2 512 2 160 163

8B 32 4 2 512 1 144 147

8B 32 4 2 512 2 149 152

8B 64 4 2 512 2 121 136

8B 128 4 2 512 2 109 113

8B 256 4 2 512 1 79 83

8B 256 4 2 1024 1 100 109

Some Results with Megatron-LM

12/18/2025 39

Some Results with Megatron-LM

Size #gpus TP PP GBS MBS Avg Tflops Max Tflops

8B 8 4 2 512 1 160 162

8B 16 4 2 512 1 155 158

8B 16 4 2 512 2 160 163

8B 32 4 2 512 2 149 152

32B 64 4 16 512 1 110 115

32B 64 4 16 1024 1 114 116

32B 128 4 16 1024 1 110 111

70B 128 4 16 1024 1 96 114

12/18/2025 40

0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512 1024

Qwen32B - Efficiency (Weak)

num_gpus

Some Results with Megatron-LM

0

0.1

0.2

0.3

0.4

0.5

0.6

64 128 256 512 1024

Llama70B - Efficiency (Weak)

num_gpus

(TP=4, PP=8) (TP=4, PP=16)

12/18/2025 41

TAKE-HOME MESSAGE

12/18/2025 42

• HF UltraScale Playbook :
https://huggingface.co/spaces/nanotron/ultrascale-playbook

• Megatron-LM papers:
https://arxiv.org/pdf/2104.04473

• The official websites/documentations of Pytorch DDP, HF Accelerate, ecc ...

Useful Resources

https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://arxiv.org/pdf/2104.04473

18/12/2025 © 2025 Members of the MINERVA Consortium 43

2

Thank you

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No
101182737. The JU receives support from the Digital Europe Programme.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

