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Training AI models evolution during time



DRAWBACKS  + WHY PARALLEL TOOLS IN AI? 



Data 

Parallelism

Model 

Sharding

Model 

Parallelism

https://colossalai.org/docs/concepts/paradigms_of_parallelism/ https://www.deepspeed.ai/tutorials/pipeline/

DIFFERENT TYPES OF PARALLELISM



DATA PARALLELISM

Data parallelism enables distributed training by 

communicating gradients before the optimizer step 

to make sure that parameters of all model replicas are 

updated using exactly the same set of gradients, and 

hence model replicas can stay consistent across iterations.



Data Parallelism – How it works

1. Each device holds a full copy of 

the model

2. Data are split on multiple GPUs 
(single or multi-node)

3. After some backpropagation
steps, the results are are 

synchronized to avoid 
convergence issues



PYTORCH DDP (Distributed Data Parallel)
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PYTORCH DDP (Distributed Data Parallel)

PYTORCH

Ring 
ALL-REDUCE

synchronize 
gradients 

across 
model replicas



from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler

# Initialize the process group
rank, local_rank, world_size, local_size, num_workers = get_resources()
dist.init_process_group("nccl", rank=rank, world_size=world_size)

...

# Data Loading 
train_sampler = DistributedSampler(dataset=train_dataset, rank = rank, num_replicas = world_size)
train_loader = torch.utils.data.DataLoader(train_dataset, sampler = train_sampler, 
batch_size=batch_size)

...

# Model preparation for Training
device = torch.device("cuda:{}".format(local_rank))
torch.cuda.set_device(local_rank)

model = model.to(device)
model = DDP(model, device_ids=[local_rank], output_device=local_rank)

PYTORCH

How to implement it with PYTORCH DDP



PYTORCH

How to implement it with PYTORCH DDP

torchrun --nnodes=2 \
--nproc_per_node=8 \
--rdzv_id=100 \
--rdzv_backend=c10d \
--rdzv_endpoint=$MASTER_ADDR:29400\
my_ddp_training.py

How to launch PyTorch DDP code

Here torchrun will launch 8 processes and invoke my_ddp_training.py on each process on the node 
it is launched on



Sequence Parallelism (SP) is a distributed training technique used to 
split long input sequences across multiple GPUs, when the sequence length is too long 
for a single GPU's memory.

For example, if we have 4 GPUs, instead of putting all 4096 tokens on one single GPU, SP 
splits the sequence into 1024 tokens per GPU.

Can be seen as a sort of data parallelism specific for LLMs use case.

bonus : SEQUENCE PARALLELISM



Main drawback of DATA PARALLELISM

With DDP each device has

a copy of the entire model

when the model exceed the single 

device memory we need something
more sophisticated



RESIDUAL STATES

[1] https://arxiv.org/pdf/2101.06840

Gradients

Parameters

Optimizer states (such as momentum

and variances in Adam )

Temporary buffers

Activations

Unusable fragmented memory

MODEL STATES

LLM memory footprint determined by:

+ precision, batch size,...

https://arxiv.org/pdf/2101.06840


LLM MEMORY FOOTPRINT EXTIMATIONS 

Consider Llama 7B :

In Leonardo we have A100 GPUs with 64 GB each ->   OoM error!

Full-Precision : fp32 ( 4 bytes )

Params 7B x 4 28 GB

Activation 7B x 4 28 GB

Gradients 7B x 4 28 GB

Optimizer 7B x 4 x 2 56 GB

TOT 140 GB

Half-Precision : fp16 or bf16 ( 2 bytes )

Params 7B x 2 14 GB

Activation 7B x 2 14 GB

Gradients 7B x 2 14 GB

Optimizer 7B x 2 x 2 28 GB

TOT 70 GB



NAIVE SOLUTIONS to Out of Memory problem

1. Lower the precision :

double ( 64 bit ) → single ( 32bit ) → half ( 16bit )

2. Quantization :

int8 ( Integer Quantization )

4-bit Quantization ( QLoRA, … )

BUT it impacts the performance, loosing information during the training



MODEL SHARDING

Model sharding is a technique for distributed training 
that divides a model's parameters, gradients, and 
optimizer states across multiple GPUs or nodes. 
This approach is particularly beneficial for training 
large models that cannot fit entirely into the 
memory of a single GPU.



FSDP and ZeRO Stage 3 

DDP training : 

• each worker (GPU) owns a replica of the entire model. 
• it uses all-reduce to sum up only the gradients over 

different workers, (but the model weights and 
optimizer states are replicated across all workers)

Model Sharding, across DDP ranks,
shard either:

• model parameters, 
• optimizer states 
• gradients 
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FSDP and ZeRO Stage 3 
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FSDP and ZeRO Stage 3 

All - Gather
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FSDP and ZeRO Stage 3 
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TOOLS FOR MODEL SHARDING

1

2

3

Accelerate

DeepSpeed

Olmo-core
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ACCELERATE by

Accelerate is an HF library 
that enables running the same PyTorch

code across any distributed configuration
by adding just few lines of code.

“In short, training and inference at scale 
made simple, efficient and adaptable.”

https://huggingface.co/docs/accelerate/index
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Examples of config.yaml files
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How to launch it

To launch the training with the new Accelerate configuration performing distributed training

it will be enough to run

accelerate launch --config_file config_accelerate.yaml my_script.py <py_args>

In SLURM it becomes accelerate launch \
--multi_gpu \
--num_machines $NNODES \
--num_processes $WORLD_SIZE \
--main_process_ip "$MASTER_ADDR" \
--main_process_port $MASTER_PORT \
--machine_rank $SLURM_PROCID \
--rdzv_backend c10d \
--config_file config_accelerate.yaml
my_script.py <py_args>
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Results

NUM NODES NUM GPUS TRAINING TIME SPEED UP

1 1 3884 s 1

1 2 1925 s 2

1 4 954 s 4

2 8 602 s 6.45

Fine-Tuning of Llama3.1-7B

NUM NODES NUM GPUS TRAINING TIME SPEED UP

1 3 OoM _

1 4 246,2 min 1

2 8 136 min 1.8

Fine-Tuning of Llama2-70B
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MODEL PARALLELISM

Model Parallelism is a technique used to split a neural 
network across multiple GPUs or nodes where 
different GPUs handle different parts of the model.



12/18/2025 29

Model Parallelism Techniques

Pipeline Parallelism - Vertical

Tensor Parallelism - Horizontal

The model is split at layer level on multiple gpus
(i.e. only one or several layers are stored in the same GPU). 
To avoid big pipeline bubbles each gpu process a portion of the 
batch (micro batch)

Each tensor is split up into multiple chunks saved on
different GPUs. During processing each shard gets processed
separately. Then, the results are synchronized at the end of the 
step. 
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Naïve PIPELINE PARALLELISM

[1]  https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
[2] https://arxiv.org/pdf/2104.04473

Pipeline bubbles

Only ONE GPU running at time!!
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Naïve PIPELINE PARALLELISM
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PIPELINE PARALLELISM

[1]  https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
[2] https://arxiv.org/pdf/2104.04473

… and there is much more literature on how to reduce pipeline bubbles 

They introduce the idea of microbatches

1 batch with 8 independent microbatches

https://medium.com/byte-sized-ai/pipeline-parallelism-explained-in-2-mins-6bdf1ab29053
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Idea behind TENSOR PARALLELISM
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TENSOR PARALLELISM

[1] https://github.com/huggingface/transformers/issues/10321#issuecomment-783543530
[2] https://arxiv.org/pdf/2104.04473

GPU 0

GPU 1

Transformer block

https://github.com/huggingface/transformers/issues/10321#issuecomment-783543530
https://github.com/huggingface/transformers/issues/10321#issuecomment-783543530
https://github.com/huggingface/transformers/issues/10321#issuecomment-783543530
https://arxiv.org/pdf/2104.04473
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Drawback of TP

Trying to scale TP past the number of GPUs on a single node ( TP>4 in our case) forces 
to use lower-bandwidth network communication (intra-node), which can significantly 
impair performance.
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TENSOR or PIPELINE PARALLELISM

Communications :

TP : 
What : All-Gather (forward pass for activations) + All-Reduce (backward pass for gradients).
When : Every layers
TP <= num_gpus_per_node!!

PP :
What : Send/Recv
When : Once per forward/backward pass per pipeline stage per mini-batch.

https://arxiv.org/pdf/2104.04473



12/18/2025 37

Model Parallelism Libraries

1

2

Megatron-LM / Nemo (NVIDIA)                    https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/NeMo

3

4

DeepSpeed https://huggingface.co/docs/transformers/v4.19.2/en/parallelism

ColossalAI https://colossalai.org/

Nanotron https://github.com/huggingface/nanotron

5 vLLM https://docs.vllm.ai/en/latest/

https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/NeMo
https://huggingface.co/docs/transformers/v4.19.2/en/parallelism
https://colossalai.org/
https://github.com/huggingface/nanotron
https://docs.vllm.ai/en/latest/
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Size #gpus TP PP GBS MBS Avg Tflops Max Tflops

8B 8 4 2 512 1 160 162

8B 16 4 2 512 1 155 158

8B 16 4 2 512 2 160 163

8B 32 4 2 512 1 144 147

8B 32 4 2 512 2 149 152

8B 64 4 2 512 2 121 136

8B 128 4 2 512 2 109 113

8B 256 4 2 512 1 79 83

8B 256 4 2 1024 1 100 109

Some Results with Megatron-LM
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Some Results with Megatron-LM

Size #gpus TP PP GBS MBS Avg Tflops Max Tflops

8B 8 4 2 512 1 160 162

8B 16 4 2 512 1 155 158

8B 16 4 2 512 2 160 163

8B 32 4 2 512 2 149 152

32B 64 4 16 512 1 110 115

32B 64 4 16 1024 1 114 116

32B 128 4 16 1024 1 110 111

70B 128 4 16 1024 1 96 114
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Some Results with Megatron-LM
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TAKE-HOME MESSAGE
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• HF UltraScale Playbook : 
https://huggingface.co/spaces/nanotron/ultrascale-playbook

• Megatron-LM papers: 
https://arxiv.org/pdf/2104.04473

• The official websites/documentations of Pytorch DDP, HF Accelerate, ecc ...

Useful Resources

https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://huggingface.co/spaces/nanotron/ultrascale-playbook
https://arxiv.org/pdf/2104.04473
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Thank you

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No
101182737. The JU receives support from the Digital Europe Programme.
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