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About this training event
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● Introduction to the MINERVA project

● Introduction to Large-Scale models in Vision, Language and Multimedia
○ SoTA Large-Scale Deep Learning architectures
○ For language, vision and multimodal AI
○ Scaling laws

● Tutorial on data and model parallelism

Most importantly…

● Not just give you information or pointers, but also practical channels and 

instructions to leverage HPC resources and/or assistance on how to get and 

use them.

● Your Swiss knife to HPC resources: MINERVA
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• It brings together EuroHPC Hosting Entities and partners representing major European 
stakeholders in AI.

• MINERVA acts as a central hub for cutting-edge European competences in large-scale 
ML/AI research and development.

• It started in January 2025, and the project's duration is 36 months

OBJECTIVES

MINERVA is a distributed, European-wide HPC-enabled AI 
application support service (AISC).
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• Establish and operate a Europe-wide Support Centre.
• Interact with AI communities through a User Advisory Board and Community Hub to identify needs and 

update the MINERVA service portfolio.
• Offer a rich service portfolio covering more levels of support, aligned with the European need to rely on 

open-source foundation models.
• Ensure models are developed according to ethical and responsible AI regulations.

• Knowledge transfer: Publishing best practice guides and user guidelines.
• Benchmarking: Evaluating model performance on different supercomputers.
• Data Access: Providing information on access to public datasets.
• Training Programs: Providing training programs shaped by end-user feedback.
• Community Hub: Supporting large-scale open-source ML/AI research and 

development on HPC.

What MINERVA Aims To Achieve

How?



Before starting…
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We would like to know a bit more about you and your needs to use HPC.

Fill in the MINERVA survey at 

https://docs.google.com/forms/d/e/1FAIpQLSeWdowBcyc1d9bMsh6BGcolZQj_pE

CPpoCsF9Mdyf60Fcr68w/viewform

This data will be used to organize and tailor other training events!



Lorenzo Baraldi, Silvia Cascianelli, Sara Sarto
University of Modena and Reggio Emilia

Large-Scale Vision & Language Models: 
Architectures and Parallelism



THE ATTENTION OPERATOR
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A new operator

Attention

Provides a way to focus on part of an input set.

Given a query and pairs of keys and values,

• Compute similarities between queries and keys

• Normalizes similarities via softmax to obtain attention scores

• Multiplies values by the scores
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Attention

Attention

Provides a way to focus on part of an input set.

Given a query and pairs of keys and values,

• Compute similarities between queries and keys

• Normalizes similarities via softmax to obtain attention scores

• Multiplies values by the scores

Similarity function

• Additive attention, e.g. wT tanh(wqq + wkk)

• Dot-product attention
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Dot-product attention
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Convolution vs Self-attention

Self Attention

“Refine” each element of the sequence by 

treating it as query, and the whole sequence as 

keys and values.

Actually: queries, keys and values are three 

different linear projections of each element of 

the input sequence.

Receptive field is infinite!

Constant path length between two different 

positions

Trivial to parallelize during training!
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Input sequence

Output sequence

Input sequence
(i.e. queries, keys, 
values)

Output sequence

1D Convolution

Self-Attention



CNNs vs RNNs vs Self-attention
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Multi-head Self-attention

● Linearly project the input sequence h times with different weights, instead of doing this only once.

● To From a sequence with length T, we obtain:
○ Q: matrix of queries, (h, T, dk)
○ K: matrix of keys, (h, T , dk)
○ V: matrix of values, (h, T, dv)

● Apply scaled dot-product attention over each “head” (i.e. over each element of axis 1)

● Concatenate the result and project back to a lower dimensionality

MultiHead(Q, K, V) = Concat(head1, …, headh)WO

where headi = Attention(Q[i], K[i], V[i])

● Can be done in parallel, with batched matrix multiplication.
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Positional encoding

● Self-attention is permutation invariant
○ Given a query, if we change the order of keys and values, result does not change.
○ Ok for encoding sets. Not for sequences or images....

● To use order information, we can inject absolute or relative positional information by adding 

positional encoding to the input representations.

● Positional encodings can be learned (simple nn.Parameter) or fixed. In the original Transformer, they 

were defined as sinusoids. With this, attention can capture both absolute and relative positional 

information (i.e. distances between items!). Now, many more alternatives (e.g. relative, Rotary, 

ALiBi)
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A Self-attentive language model for translation

Encoder

Uses self-attention on its input

Multiple attention layers stacked together (with add+norm) 

and feed-forward layers (linear layers applied timewise).

Decoder

Self-attention on words

Cross-attention on encoder outputs: use decoder sequences 

as queries, encoder outputs as key/values.

16Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. Attention is all you need. In NIPS 2017.



SCALING LAWS
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Training Transformers

“Architecture alone does not make a model”

● A model expresses different properties depending on how it is 

trained
● Like nature vs. nurture, both impact what the model does

● Training is what influences parameters
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Architecture + Training = Model



The trend

• Early works: Task-specific architectures  using shared word vector  representations

• BERT: Pretraining and Fine tuning

• GPT-3: One/Few shot learning
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Trend: the bigger, the better
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175 Billion  Parameters!
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Today…
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Scaling Laws

● Scientific problem: How does model performance change with increasing scale?

● Engineering importance: Training frontier models costs millions of dollars

● Safety importance: Models are black boxes with often unexpected capabilities
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Scaling Laws for Neural Language Models, 
Kaplan et al. 2020

Main RQ: What is the relationship between compute, data, the number of parameters, and performance?
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Kaplan et al., 2020 - Main Idea

● Train models of vastly different scale (data, compute, params) and find the loss is predictably related 

to the scale

● Offer a predictive framework

● They make certain recommendations based on the scaling laws
○ Ratio between parameters and data
○ Don’t train to convergence
○ Critical batch size
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Kaplan et al., 2020 - Main Results

1. Performance depends strongly on scale, weakly on model shape

2. Performance scales with each of compute (C), data (D), and # of parameters (N) when not 

bottlenecked by the other two

3. Performance improves predictably if we scale N and D in tandem, but suffers diminishing returns if N 

or D is held fixed

4. Training curves are predictable, so we can (roughly) predict the final loss by extrapolating the early 

part of the training curve, regardless(ish) of model size

5. We can predict how well the model will perform on OOD data by looking at the training validation 

accuracy

6. Large models are more sample efficient than small ones

7. Convergence is inefficient!

8. The ideal batch size (𝐵𝑐𝑟𝑖𝑡) is roughly a power of the loss only
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TRANSFORMERS FOR VISION
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Idea: Standard Transformer on Pixels

Layer Normalization

MLP MLP MLP MLP

+

+

Self-Attention

Layer Normalization

Treat an image as a 
set of pixel values

Feed as input to 
standard Transformer

Chen et al, “Generative Pretraining from Pixels”, ICML 2020
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R x R image needs R4 

elements per attention 
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Idea: Standard Transformer on Pixels

Layer Normalization

MLP MLP MLP MLP

+

+

Self-Attention

Layer Normalization

Treat an image as a 
set of pixel values

standard Transformer

Chen et al, “Generative Pretraining from Pixels”, ICML 2020

Feed as input to

Problem: Memory use!

R x R image needs R4 

elements per attention 
matrix

R=128, 48 layers, 16 
heads per layer takes 
768GB of memory for 
attention matrices for a 
single example…



Idea: Standard Transformer on Patches

Cat image is free for commercial 

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021
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D-dimensional vector
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Linear projection to 
D-dimensional vector
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of shape 3x16x16
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embedding: learned D-
dim vector per position
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Vision Transformer (ViT)

Add positional 
embedding: learned D-
dim vector per position

Linear projection to

Output vectors

Exact same as 
NLP Transformer!

Special extra input:
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(D dims, learned)+ + + + + + + + +

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

D-dimensional vector

N input patches, each 
of shape 3x16x16

Cat image is free for commercial 

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Computer vision model 
with no convolutions!



Vision Transformer (ViT)

Add positional 
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dim vector per position

Linear projection to

Output vectors

Exact same as 
NLP Transformer!

Special extra input:
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D-dimensional vector
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Cat image is free for commercial 
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Computer vision model 
with no convolutions!

Not quite: With patch size p, first 
layer is Conv2D(pxp, 3->D, stride=p)



Vision Transformer (ViT)

Add positional 
embedding: learned D-
dim vector per position

Linear projection to

Output vectors

Exact same as 
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

D-dimensional vector

N input patches, each 
of shape 3x16x16

Cat image is free for commercial 

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Computer vision model 
with no convolutions!

Not quite: MLPs in Transformer 
are stacks of 1x1 convolution



Vision Transformer (ViT)

Add positional 
embedding: learned D-
dim vector per position

Linear projection to

Output vectors

Exact same as 
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

D-dimensional vector

N input patches, each 
of shape 3x16x16

Cat image is free for commercial 

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

In practice: take 224x224 input image,
divide into 14x14 grid of 16x16 pixel 
patches (or 16x16 grid of 14x14 patches)

Each attention matrix has 144 = 38,416 
entries, takes 150 KB
(or 65,536 entries, takes 256 KB)



Vision Transformer (ViT)

Add positional 
embedding: learned D-
dim vector per position

Linear projection to

Output vectors

Exact same as 
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Linear projection 
to C-dim vector 
of predicted 
class scores

Transformer

D-dimensional vector

N input patches, each 
of shape 3x16x16

Cat image is free for commercial 

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

In practice: take 224x224 input image, 
divide into 14x14 grid of 16x16 pixel 
patches (or 16x16 grid of 14x14 patches)

With 48 layers, 16 heads per 
layer, all attention matrices 
take 112 MB (or 192MB)



Improving ViT: Distillation

Step 1: Train a teacher 
model on images and 
ground-truth labels

P(cat) = 0.9
P(dog) = 0.1

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015

GT label: 
Cat

Cross 
Entropy 

Loss
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Improving ViT:

Distillation
Step 1: Train a teacher 
model on images and 
ground-truth labels

Step 2: Train a 
student model to 
match predictions 
from the teacher 
(sometimes also to 
match GT labels)

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

Cross 
Entropy 

Loss

GT label: 
Dog

P(cat) = 0.9
P(dog) = 0.1

GT label: 
Cat

Entropy 
Loss

Often works better than 
training student from scratch 
(especially if teacher is
bigger than student)

Cross

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015



Improving ViT:

Distillation
Step 1: Train a teacher 
model on images and 
ground-truth labels

Step 2: Train a 
student model to 
match predictions 
from the teacher 
(sometimes also to 
match GT labels)

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

Cross 
Entropy 

Loss

GT label: 
Dog

P(cat) = 0.9
P(dog) = 0.1

GT label: 
Cat

Cross 
Entropy 

Loss

Can also train student on 
unlabeled data! (Semi-
supervised learning)

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015



Improving ViT: Distillation

Step 1: Train a teacher
CNN on ImageNet

Step 2: Train a
student ViT to match 
ImageNet predictions 
from the teacher CNN 
(and match GT labels)

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

Cross 
Entropy 

Loss

GT label: 
Dog

P(cat) = 0.9
P(dog) = 0.1

GT label: 
Cat

Cross 
Entropy 

Loss

Touvrom et al, “Training data-efficient image transformers & distillation through attention”, ICML 2021



Improving ViT: Distillation

Input patches

Linear projection

Output vectors

Classification 
token

+ + + + + + + + +

Positional Embedding

Predicted 
class scores; 
should match 
ground-truth

Transformer

Distillation
token

Predicted 
class scores; 
should match

Touvrom et al, “Training data-efficient image transformers & distillation through attention”, ICML 2021

teacher



ViT vs CNN

7x7 conv, 64, / 2

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2
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3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Input:
3 x 224 x 224 Input

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including 
ResNets), decrease resolution 
and increase channels as you 
go deeper in the network 
(Hierarchical architecture)

Useful since objects in images 
can occur at various scales
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(Isotropic architecture)



ViT vs CNN

Input
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+
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+
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Input:
3 x 224 x 224

1st block:
768 x 14 x 14

2nd block: 
768 x 14 x 14

3rd block:
768 x 14 x 14

In a ViT, all blocks have 
same resolution and 
number of channels 

(Isotropic architecture)

Can we build a hierarchical ViT model?



Hierarchical ViT: Swin Transformer
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Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021
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Hierarchical ViT: Swin Transformer
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4 4 8 8 16 16 32 32

Divide image into 4x4 
patches and project 

to C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 32x32

Problem: 224x224 image 
with 56x56 grid of 4x4
patches: attention matrix 
has 564 = 9.8M entries



Hierarchical ViT: Swin Transformer

C ×

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

3 ×𝐻 ×𝑊

× 8𝐶 × ×
𝐻 × 𝑊 2𝐶 × 𝐻 × 𝑊 4𝐶 × 𝐻 𝑊 𝐻 𝑊

4 4 8 8 16 16 32 32

Divide image into 4x4 
patches and project 

to C dimensions

Merge 2x2 
neighborhoods; 
now patches are 
(effectively) 8x8

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 16x16

Merge 2x2 
neighborhoods; 
now patches are 

(effectively) 32x32

Problem: 224x224 image 
with 56x56 grid of 4x4
patches: attention matrix 
has 564 = 9.8M entries

Solution: don’t use full 
attention, instead use 
attention over patches



Swin Transformer: Window Attention

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

With H x W grid of tokens, each attention 
matrix is H2W2 – quadratic in image size



Swin Transformer: Window Attention

With H x W grid of tokens, each attention 
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend 
to all other tokens, instead divide into 
windows of M x M tokens (here M=4); only 
compute attention within each window

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



Swin Transformer: Window Attention

With H x W grid of tokens, each attention 
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend 
to all other tokens, instead divide into 
windows of M x M tokens (here M=4); only 
compute attention within each window

Total size of all attention matrices is now: 
M4(H/M)(W/M) = M2HW

Linear in image size for fixed M!
Swin uses M=7 throughout the network

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



Swin Transformer: Window Attention
Problem: tokens only interact with other tokens within 
the same window; no communication across windows

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021



Swin Transformer: Shifted Window Attention
Solution: Alternate between normal windows and shifted
windows in successive Transformer blocks

Block L: Normal windows
Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Block L+1: Shifted Windows

Ugly detail: 
Non-square 
windows at 
edges and 
corners



Swin Transformer: Shifted Window Attention

Solution: Alternate between normal windows and 
shifted windows in successive Transformer blocks

Detail: Relative Positional Bias

ViT adds positional embedding to 
input tokens, encodes absolute 
position of each token in the image

Swin does not use positional 
embeddings, instead encodes 
relative position between patches 
when computing attention:

Attention with relative bias:

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝐷

Block L: Normal windows Block L+1: Shifted Windows 𝐵:𝑀2 ×𝑀2 (learned biases)
Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

+ 𝐵 𝑉

𝑄,𝐾,𝑉:𝑀2 × 𝐷 (Query, Key, Value)



Object Detection with Transformers: DETR

Simple object detection pipeline: directly output a set of boxes from a Transformer

No anchors, no regression of box transforms

Match predicted boxes to GT boxes with bipartite matching; train to regress box coordinates

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020



Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020



Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020



Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020



Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020



Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020



MULTIMODAL MODELS
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What is multimodality?

In our case, focusing on NLP: text + one or more other modality (images, speech, 

audio, olfaction, others). We’ll mostly focus on images as the other modality.



Multimodal is hot right now

.. and/but has been “the next big thing” for almost a decade!



• Text encoder:
• 12-layer Transformer with causal mask

• Image encoder:
• ResNet families: RN50, RN101, RN50x4, 

RN50x16, RN50x64
• ViT families: ViT-B/32, ViT-B/16, ViT-L/14

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision”, ICML 2021

CLIP: Models and Training Complexity



Radford et al. "Learning Transferable Visual Models From Natural Language Supervision”, ICML 2021

Vision-language models: Contrastive learning

• Contrastive training to bridge the image and text embedding spaces

• Making embedding of (image, text) pairs similar and that of non-pairs dissimilar

• This embedding space is super helpful for performing searches across modalities
• Can return the best caption given an image

• Has impressive capabilities for zero-shot adaptation to unseen tasks, without the need for 
fine-tuning



CLIP Variants

• Objective function or pretraining
• Combining CLIP with label supervision

(BASIC, UniCL, LiT, MOFI)

• Contrastive + self-supervised image
representation learning

• Contrastive + Self-supervlised methods like
SimCLR (SLIP, DeCLIP, nCLIP)

• Contrastve + Masked Image Modeling (EVA, EVA-
02, MVP)

• Fine-grained matching loss (FILIP)

• Region-level pretraining (RegionCLIP, GLIP)

• Sigmoid loss for language-image pre-training
(SigCLIP)



Vision-Language Models: Toward generative models

• Architecture
• Dual encoders

• Encoder-decoder

• Fusion decoder

CLIP & its mentioned variants



SimVLM

Wang et al., “SimVLM: Simple Visual Language Model Pretraining with Weak Supervision”, ICLR 2022

Slowly moving from contrastive/discriminative to generative.



• Use mixed image-text and image-label
(JFT-3B) data for pre-training

• A generative branch for enhanced
performance and enabling new capabilities
(image captioning and VQA)

• CoCa aims to learn a better image encoder
from scratch

CoCa: Contrastive Captioner

Yu et al., “Coca: Contrastive captioners are image-text foundation models”, 2022



CoCa: Contrastive Captioner

• Use mixed image-text and image-label (JFT-3B)
data for pre-training

• A generative branch for enhanced performance
and enabling new capabilities (image captioning
and VQA)

• CoCa aims to learn a better image encoder from
scratch

Yu et al., “Coca: Contrastive captioners are image-text foundation models”, 2022



CoCa Architecture

• Unified single-encoder, dual-encoder, and 
encoder-decoder paradigms

• one image-text foundation model with the 
capabilities of all three approaches

• Cross-attention is omitted in unimodal decoder 
layers to encode text-only representations

• Multimodal decoder cross-attending to image 
encoder outputs to learn multimodal 
representations.

Yu et al., “Coca: Contrastive captioners are image-text foundation models”, 2022





Frozen (Tsimpoukelli, Menick, Cabi, et al., 2021)

Kind of like MMBT but with a better LLM (T5) and a 

better vision encoder (NF-ResNet).

Multi-Modal Few-Shot Learners!



80b param model based on Chinchilla. 

Multi-image.

Flamingo (Alayrac et al., 2022)



Perceiver Resampler



Inject visual info directly into a frozen LM via cross-attention (remember FiLM?).

Gated XATTN



Original image from Karpathy as a 

“visual Turing test” →

Why is this funny?



Architecture of Multimodal Models

Li et al., “Multimodal Foundation Models: From Specialists to General-Purpose Assistants”, 2023



Architecture of Multimodal Models

Li et al., “Multimodal Foundation Models: From Specialists to General-Purpose Assistants”, 2023



Q1: how to learn image representations? 
Q2: how to extend vision models with more 
flexible, promptable interfaces?

Q3: how to do image generation?

Q4: how to train multimodal LLM? 
Q5: how to chain multimodal experts 
with LLM?

Image
Encoder

Image 
Generation

Consume visual data

Produce visual data

LLM for language understanding and generation

General-purpose interface



Teacher

https://llava-vl.github.io/

Haotian Liu*, Chunyuan Li*, Qingyang Wu, Yong JaeLee (* Equal contribution)

Self-Instruct with Strong Teacher LLMs But No Teacher is available on multiGPT4?

LLaMA Alpaca Vicuna

GPT-3.5 ShareGPT
(Human & GPT)

None

GPT-4

(text-only)

52K 700K
(70 conversions)

Instruction-

following 

Data

GPT-4-LLM LLaVA

• 158K multimodal instruction following data 

(First & High Quality)

GPT-4

(text-only)

Multimodal Chatbot
Large Language and Vision Assistant

Visual Instruction Tuning with GPT-4



• Rich Symbolic Representations of Images

• In-context-learning with a few manual examples

 Text-only GPT-4

GPT-assisted Visual Instruction Data Generation



Three type of instruction-following responses

GPT-assisted Visual Instruction Data Generation



❑ Architecture

LLaVA: Large Language-and-Vision Assistant

❑ Two-stage Training

•Stage1: Pre-training for Feature Alignment.

Only the projection matrix is updated, based on a subset of CC3M.

•Stage2: Fine-tuning End-to-End.Both the projection matrix and LLM are updated

•Visual Chat: Our generated multimodal instruction data for daily user-oriented applications.

•ScienceQA: Multimodal reasoning dataset for the science domain.



Example 1: Extreme Ironing



Example 2: Chicken Nugget Map

Strong Visual Reasoning Ability
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Example 3: LLaVA



THANK YOU!
Questions?
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