
Large-Scale Vision & Language Models:
Architectures and Parallelism

About this training event

2

● Introduction to the MINERVA project

● Introduction to Large-Scale models in Vision, Language and Multimedia
○ SoTA Large-Scale Deep Learning architectures
○ For language, vision and multimodal AI
○ Scaling laws

● Tutorial on data and model parallelism

Most importantly…

● Not just give you information or pointers, but also practical channels and

instructions to leverage HPC resources and/or assistance on how to get and

use them.

● Your Swiss knife to HPC resources: MINERVA

12/01/2026 © 2025 Members of the MINERVA Consortium 31/12/2026 3

• It brings together EuroHPC Hosting Entities and partners representing major European
stakeholders in AI.

• MINERVA acts as a central hub for cutting-edge European competences in large-scale
ML/AI research and development.

• It started in January 2025, and the project's duration is 36 months

OBJECTIVES

MINERVA is a distributed, European-wide HPC-enabled AI
application support service (AISC).

12/01/2026 © 2025 Members of the MINERVA Consortium 41/12/2026 4

• Establish and operate a Europe-wide Support Centre.
• Interact with AI communities through a User Advisory Board and Community Hub to identify needs and

update the MINERVA service portfolio.
• Offer a rich service portfolio covering more levels of support, aligned with the European need to rely on

open-source foundation models.
• Ensure models are developed according to ethical and responsible AI regulations.

• Knowledge transfer: Publishing best practice guides and user guidelines.
• Benchmarking: Evaluating model performance on different supercomputers.
• Data Access: Providing information on access to public datasets.
• Training Programs: Providing training programs shaped by end-user feedback.
• Community Hub: Supporting large-scale open-source ML/AI research and

development on HPC.

What MINERVA Aims To Achieve

How?

Before starting…

5

We would like to know a bit more about you and your needs to use HPC.

Fill in the MINERVA survey at

https://docs.google.com/forms/d/e/1FAIpQLSeWdowBcyc1d9bMsh6BGcolZQj_pE

CPpoCsF9Mdyf60Fcr68w/viewform

This data will be used to organize and tailor other training events!

Lorenzo Baraldi, Silvia Cascianelli, Sara Sarto
University of Modena and Reggio Emilia

Large-Scale Vision & Language Models:
Architectures and Parallelism

THE ATTENTION OPERATOR

7

A new operator

Attention

Provides a way to focus on part of an input set.

Given a query and pairs of keys and values,

• Compute similarities between queries and keys

• Normalizes similarities via softmax to obtain attention scores

• Multiplies values by the scores

8

q

ki

vi

f(q, ki)

softmax

sum

Attention

9

Attention

Attention

Provides a way to focus on part of an input set.

Given a query and pairs of keys and values,

• Compute similarities between queries and keys

• Normalizes similarities via softmax to obtain attention scores

• Multiplies values by the scores

Similarity function

• Additive attention, e.g. wT tanh(wqq + wkk)

• Dot-product attention

10

q

ki

vi

f(q, ki)

softmax

sum

Dot-product attention

11

Convolution vs Self-attention

Self Attention

“Refine” each element of the sequence by

treating it as query, and the whole sequence as

keys and values.

Actually: queries, keys and values are three

different linear projections of each element of

the input sequence.

Receptive field is infinite!

Constant path length between two different

positions

Trivial to parallelize during training!

12

Input sequence

Output sequence

Input sequence
(i.e. queries, keys,
values)

Output sequence

1D Convolution

Self-Attention

CNNs vs RNNs vs Self-attention

13

Multi-head Self-attention

● Linearly project the input sequence h times with different weights, instead of doing this only once.

● To From a sequence with length T, we obtain:
○ Q: matrix of queries, (h, T, dk)
○ K: matrix of keys, (h, T , dk)
○ V: matrix of values, (h, T, dv)

● Apply scaled dot-product attention over each “head” (i.e. over each element of axis 1)

● Concatenate the result and project back to a lower dimensionality

MultiHead(Q, K, V) = Concat(head1, …, headh)WO

where headi = Attention(Q[i], K[i], V[i])

● Can be done in parallel, with batched matrix multiplication.

14

Positional encoding

● Self-attention is permutation invariant
○ Given a query, if we change the order of keys and values, result does not change.
○ Ok for encoding sets. Not for sequences or images....

● To use order information, we can inject absolute or relative positional information by adding

positional encoding to the input representations.

● Positional encodings can be learned (simple nn.Parameter) or fixed. In the original Transformer, they

were defined as sinusoids. With this, attention can capture both absolute and relative positional

information (i.e. distances between items!). Now, many more alternatives (e.g. relative, Rotary,

ALiBi)

15

A Self-attentive language model for translation

Encoder

Uses self-attention on its input

Multiple attention layers stacked together (with add+norm)

and feed-forward layers (linear layers applied timewise).

Decoder

Self-attention on words

Cross-attention on encoder outputs: use decoder sequences

as queries, encoder outputs as key/values.

16Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. Attention is all you need. In NIPS 2017.

SCALING LAWS

17

Training Transformers

“Architecture alone does not make a model”

● A model expresses different properties depending on how it is

trained
● Like nature vs. nurture, both impact what the model does

● Training is what influences parameters

18

Architecture + Training = Model

The trend

• Early works: Task-specific architectures using shared word vector representations

• BERT: Pretraining and Fine tuning

• GPT-3: One/Few shot learning

19

Trend: the bigger, the better

20

175 Billion Parameters!

21

Today…

22

Scaling Laws

● Scientific problem: How does model performance change with increasing scale?

● Engineering importance: Training frontier models costs millions of dollars

● Safety importance: Models are black boxes with often unexpected capabilities

23

Scaling Laws for Neural Language Models,
Kaplan et al. 2020

Main RQ: What is the relationship between compute, data, the number of parameters, and performance?

24

Kaplan et al., 2020 - Main Idea

● Train models of vastly different scale (data, compute, params) and find the loss is predictably related

to the scale

● Offer a predictive framework

● They make certain recommendations based on the scaling laws
○ Ratio between parameters and data
○ Don’t train to convergence
○ Critical batch size

25

Kaplan et al., 2020 - Main Results

1. Performance depends strongly on scale, weakly on model shape

2. Performance scales with each of compute (C), data (D), and # of parameters (N) when not

bottlenecked by the other two

3. Performance improves predictably if we scale N and D in tandem, but suffers diminishing returns if N

or D is held fixed

4. Training curves are predictable, so we can (roughly) predict the final loss by extrapolating the early

part of the training curve, regardless(ish) of model size

5. We can predict how well the model will perform on OOD data by looking at the training validation

accuracy

6. Large models are more sample efficient than small ones

7. Convergence is inefficient!

8. The ideal batch size (𝐵𝑐𝑟𝑖𝑡) is roughly a power of the loss only

26

TRANSFORMERS FOR VISION

27

Idea: Standard Transformer on Pixels

Layer Normalization

MLP MLP MLP MLP

+

+

Self-Attention

Layer Normalization

Treat an image as a
set of pixel values

Feed as input to
standard Transformer

Chen et al, “Generative Pretraining from Pixels”, ICML 2020

Idea: Standard Transformer on Pixels

Layer Normalization

MLP MLP MLP MLP

+

+

Self-Attention

Layer Normalization

Treat an image as a
set of pixel values

Feed as input to
standard Transformer

Chen et al, “Generative Pretraining from Pixels”, ICML 2020

Problem: Memory use!

R x R image needs R4

elements per attention
matrix

Idea: Standard Transformer on Pixels

Layer Normalization

MLP MLP MLP MLP

+

+

Self-Attention

Layer Normalization

Treat an image as a
set of pixel values

standard Transformer

Chen et al, “Generative Pretraining from Pixels”, ICML 2020

Feed as input to

Problem: Memory use!

R x R image needs R4

elements per attention
matrix

R=128, 48 layers, 16
heads per layer takes
768GB of memory for
attention matrices for a
single example…

Idea: Standard Transformer on Patches

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Idea: Standard Transformer on Patches

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Idea: Standard Transformer on Patches

N input patches, each
of shape 3x16x16

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Idea: Standard Transformer on Patches

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Idea: Standard Transformer on Patches

+ + + + + + + + +

Linear projection to
D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Add positional
embedding: learned D-
dim vector per position

Idea: Standard Transformer on Patches

Add positional
embedding: learned D-
dim vector per position

Linear projection to

Transformer

Output vectors

Exact same as
NLP Transformer!

+ + + + + + + + +

D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Idea: Standard Transformer on Patches

Add positional
embedding: learned D-
dim vector per position

Linear projection to

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Transformer

D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Idea: Standard Transformer on Patches

Add positional
embedding: learned D-
dim vector per position

Linear projection to

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Linear projection
to C-dim vector
of predicted
class scores

Transformer

D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Vision Transformer (ViT)

Add positional
embedding: learned D-
dim vector per position

Linear projection to

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Linear projection
to C-dim vector
of predicted
class scores

Transformer

D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Computer vision model
with no convolutions!

Vision Transformer (ViT)

Add positional
embedding: learned D-
dim vector per position

Linear projection to

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Linear projection
to C-dim vector
of predicted
class scores

Transformer

D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Computer vision model
with no convolutions!

Not quite: With patch size p, first
layer is Conv2D(pxp, 3->D, stride=p)

Vision Transformer (ViT)

Add positional
embedding: learned D-
dim vector per position

Linear projection to

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Linear projection
to C-dim vector
of predicted
class scores

Transformer

D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

Computer vision model
with no convolutions!

Not quite: MLPs in Transformer
are stacks of 1x1 convolution

Vision Transformer (ViT)

Add positional
embedding: learned D-
dim vector per position

Linear projection to

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Linear projection
to C-dim vector
of predicted
class scores

Transformer

D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

In practice: take 224x224 input image,
divide into 14x14 grid of 16x16 pixel
patches (or 16x16 grid of 14x14 patches)

Each attention matrix has 144 = 38,416
entries, takes 150 KB
(or 65,536 entries, takes 256 KB)

Vision Transformer (ViT)

Add positional
embedding: learned D-
dim vector per position

Linear projection to

Output vectors

Exact same as
NLP Transformer!

Special extra input:
classification token
(D dims, learned)+ + + + + + + + +

Linear projection
to C-dim vector
of predicted
class scores

Transformer

D-dimensional vector

N input patches, each
of shape 3x16x16

Cat image is free for commercial

use under a Pixabay licenseDosovitskiy et al, “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”, ICLR 2021

In practice: take 224x224 input image,
divide into 14x14 grid of 16x16 pixel
patches (or 16x16 grid of 14x14 patches)

With 48 layers, 16 heads per
layer, all attention matrices
take 112 MB (or 192MB)

Improving ViT: Distillation

Step 1: Train a teacher
model on images and
ground-truth labels

P(cat) = 0.9
P(dog) = 0.1

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015

GT label:
Cat

Cross
Entropy

Loss

Improving ViT: Distillation

Step 1: Train a teacher
model on images and
ground-truth labels

Step 2: Train a
student model to
match predictions
from the teacher

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

P(cat) = 0.9
P(dog) = 0.1

GT label:
Cat

Cross
Entropy

Loss

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015

Improving ViT: Distillation

Step 1: Train a teacher
model on images and
ground-truth labels

Step 2: Train a
student model to
match predictions
from the teacher
(sometimes also to
match GT labels)

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

Cross
Entropy

Loss

GT label:
Dog

P(cat) = 0.9
P(dog) = 0.1

GT label:
Cat

Cross
Entropy

Loss

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015

Improving ViT:

Distillation
Step 1: Train a teacher
model on images and
ground-truth labels

Step 2: Train a
student model to
match predictions
from the teacher
(sometimes also to
match GT labels)

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

Cross
Entropy

Loss

GT label:
Dog

P(cat) = 0.9
P(dog) = 0.1

GT label:
Cat

Entropy
Loss

Often works better than
training student from scratch
(especially if teacher is
bigger than student)

Cross

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015

Improving ViT:

Distillation
Step 1: Train a teacher
model on images and
ground-truth labels

Step 2: Train a
student model to
match predictions
from the teacher
(sometimes also to
match GT labels)

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

Cross
Entropy

Loss

GT label:
Dog

P(cat) = 0.9
P(dog) = 0.1

GT label:
Cat

Cross
Entropy

Loss

Can also train student on
unlabeled data! (Semi-
supervised learning)

Hinton et al, “Distilling the knowledge in a neural network”, NeurIPS Deep Learning and Representation Learning Workshop, 2015

Improving ViT: Distillation

Step 1: Train a teacher
CNN on ImageNet

Step 2: Train a
student ViT to match
ImageNet predictions
from the teacher CNN
(and match GT labels)

P(cat) = 0.1
P(dog) = 0.9

P(cat) = 0.2
P(dog) = 0.8

KL Divergence Loss

Cross
Entropy

Loss

GT label:
Dog

P(cat) = 0.9
P(dog) = 0.1

GT label:
Cat

Cross
Entropy

Loss

Touvrom et al, “Training data-efficient image transformers & distillation through attention”, ICML 2021

Improving ViT: Distillation

Input patches

Linear projection

Output vectors

Classification
token

+ + + + + + + + +

Positional Embedding

Predicted
class scores;
should match
ground-truth

Transformer

Distillation
token

Predicted
class scores;
should match

Touvrom et al, “Training data-efficient image transformers & distillation through attention”, ICML 2021

teacher

ViT vs CNN

7x7 conv, 64, / 2

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Input:
3 x 224 x 224 Input

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including
ResNets), decrease resolution
and increase channels as you
go deeper in the network
(Hierarchical architecture)

Useful since objects in images
can occur at various scales

ViT vs CNN

Input

3x3 conv, 64

7x7 conv, 64, / 2

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including
ResNets), decrease resolution
and increase channels as you
go deeper in the network
(Hierarchical architecture)

Useful since objects in images
can occur at various scales

Layer Normalization

+

MLP MLP MLP MLP

Layer Normalization

+

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

Layer Normalization

+

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

Layer Normalization

+

Self-Attention

Input:
3 x 224 x 224

1st block:
768 x 14 x 14

2nd block:
768 x 14 x 14

3rd block:
768 x 14 x 14

In a ViT, all blocks have
same resolution and
number of channels

(Isotropic architecture)

ViT vs CNN

Input

3x3 conv, 64

7x7 conv, 64, / 2

Pool

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 128, / 2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Input:
3 x 224 x 224

Stage 1:
64 x 56 x 56

Stage 2:
128 x 28 x 28

Stage 3:
256 x 14 x 14

In most CNNs (including
ResNets), decrease resolution
and increase channels as you
go deeper in the network
(Hierarchical architecture)

Useful since objects in images
can occur at various scales

Layer Normalization

+

MLP MLP MLP MLP

Layer Normalization

+

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

Layer Normalization

+

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

Layer Normalization

+

Self-Attention

Input:
3 x 224 x 224

1st block:
768 x 14 x 14

2nd block:
768 x 14 x 14

3rd block:
768 x 14 x 14

In a ViT, all blocks have
same resolution and
number of channels

(Isotropic architecture)

Can we build a hierarchical ViT model?

Hierarchical ViT: Swin Transformer

C ×
𝐻

×
𝑊

4 4

3 ×𝐻 ×𝑊

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Divide image into 4x4
patches and project

to C dimensions

Hierarchical ViT: Swin Transformer

C ×
𝐻

×
𝑊

4 4

3 ×𝐻 ×𝑊

2𝐶 ×
𝐻

×
𝑊

8 8

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Divide image into 4x4
patches and project

to C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

Hierarchical ViT: Swin Transformer

3 ×𝐻 ×𝑊

C ×
𝐻 𝑊

2𝐶 ×
𝐻

×
𝑊

4
×
4 8 8

Divide image into 4x4
patches and project

to C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

H/4

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

W/4
C

Hierarchical ViT: Swin Transformer

3 ×𝐻 ×𝑊

C ×
𝐻 𝑊

2𝐶 ×
𝐻

×
𝑊

4
×
4 8 8

Divide image into 4x4
patches and project

to C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

H/4

W/4
C

4C
H/8

W/8

Concatenate
groups of
2x2 features

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Hierarchical ViT: Swin Transformer

3 ×𝐻 ×𝑊

C ×
𝐻 𝑊

2𝐶 ×
𝐻

×
𝑊

4
×
4 8 8

Divide image into 4x4
patches and project

to C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

H/4

W/4
C

4C
H/8

W/8

H/8

W/8
2C

Concatenate
groups of
2x2 features

Linear
projection
from 4C to
2C channels
(1x1 conv)

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Hierarchical ViT: Swin Transformer

C ×
𝐻

×
𝑊

4 4

3 ×𝐻 ×𝑊

2𝐶 ×
𝐻

×
𝑊

8 8
4𝐶 ×

𝐻
×
𝑊

16 16

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Divide image into 4x4
patches and project

to C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

Merge 2x2
neighborhoods;
now patches are

(effectively) 16x16

Hierarchical ViT: Swin Transformer

C ×
𝐻

×
𝑊

4 4

3 ×𝐻 ×𝑊

2𝐶 ×
𝐻

×
𝑊

8 8
4𝐶 ×

𝐻
×
𝑊

16 16
8𝐶 ×

𝐻
×
𝑊

32 32

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Divide image into 4x4
patches and project

to C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

Merge 2x2
neighborhoods;
now patches are

(effectively) 16x16

Merge 2x2
neighborhoods;
now patches are

(effectively) 32x32

Hierarchical ViT: Swin Transformer

C ×

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

3 ×𝐻 ×𝑊

× 8𝐶 × ×
𝐻 × 𝑊 2𝐶 × 𝐻 × 𝑊 4𝐶 × 𝐻 𝑊 𝐻 𝑊

4 4 8 8 16 16 32 32

Divide image into 4x4
patches and project

to C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

Merge 2x2
neighborhoods;
now patches are

(effectively) 16x16

Merge 2x2
neighborhoods;
now patches are

(effectively) 32x32

Problem: 224x224 image
with 56x56 grid of 4x4
patches: attention matrix
has 564 = 9.8M entries

Hierarchical ViT: Swin Transformer

C ×

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

3 ×𝐻 ×𝑊

× 8𝐶 × ×
𝐻 × 𝑊 2𝐶 × 𝐻 × 𝑊 4𝐶 × 𝐻 𝑊 𝐻 𝑊

4 4 8 8 16 16 32 32

Divide image into 4x4
patches and project

to C dimensions

Merge 2x2
neighborhoods;
now patches are
(effectively) 8x8

Merge 2x2
neighborhoods;
now patches are

(effectively) 16x16

Merge 2x2
neighborhoods;
now patches are

(effectively) 32x32

Problem: 224x224 image
with 56x56 grid of 4x4
patches: attention matrix
has 564 = 9.8M entries

Solution: don’t use full
attention, instead use
attention over patches

Swin Transformer: Window Attention

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

With H x W grid of tokens, each attention
matrix is H2W2 – quadratic in image size

Swin Transformer: Window Attention

With H x W grid of tokens, each attention
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend
to all other tokens, instead divide into
windows of M x M tokens (here M=4); only
compute attention within each window

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Swin Transformer: Window Attention

With H x W grid of tokens, each attention
matrix is H2W2 – quadratic in image size

Rather than allowing each token to attend
to all other tokens, instead divide into
windows of M x M tokens (here M=4); only
compute attention within each window

Total size of all attention matrices is now:
M4(H/M)(W/M) = M2HW

Linear in image size for fixed M!
Swin uses M=7 throughout the network

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Swin Transformer: Window Attention
Problem: tokens only interact with other tokens within
the same window; no communication across windows

Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Swin Transformer: Shifted Window Attention
Solution: Alternate between normal windows and shifted
windows in successive Transformer blocks

Block L: Normal windows
Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

Block L+1: Shifted Windows

Ugly detail:
Non-square
windows at
edges and
corners

Swin Transformer: Shifted Window Attention

Solution: Alternate between normal windows and
shifted windows in successive Transformer blocks

Detail: Relative Positional Bias

ViT adds positional embedding to
input tokens, encodes absolute
position of each token in the image

Swin does not use positional
embeddings, instead encodes
relative position between patches
when computing attention:

Attention with relative bias:

𝐴 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝐷

Block L: Normal windows Block L+1: Shifted Windows 𝐵:𝑀2 ×𝑀2 (learned biases)
Liu et al, “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”, CVPR 2021

+ 𝐵 𝑉

𝑄,𝐾,𝑉:𝑀2 × 𝐷 (Query, Key, Value)

Object Detection with Transformers: DETR

Simple object detection pipeline: directly output a set of boxes from a Transformer

No anchors, no regression of box transforms

Match predicted boxes to GT boxes with bipartite matching; train to regress box coordinates

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

Object Detection with Transformers: DETR

Carion et al, “End-to-End Object Detection with Transformers”, ECCV 2020

MULTIMODAL MODELS

76

What is multimodality?

In our case, focusing on NLP: text + one or more other modality (images, speech,

audio, olfaction, others). We’ll mostly focus on images as the other modality.

Multimodal is hot right now

.. and/but has been “the next big thing” for almost a decade!

• Text encoder:
• 12-layer Transformer with causal mask

• Image encoder:
• ResNet families: RN50, RN101, RN50x4,

RN50x16, RN50x64
• ViT families: ViT-B/32, ViT-B/16, ViT-L/14

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision”, ICML 2021

CLIP: Models and Training Complexity

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision”, ICML 2021

Vision-language models: Contrastive learning

• Contrastive training to bridge the image and text embedding spaces

• Making embedding of (image, text) pairs similar and that of non-pairs dissimilar

• This embedding space is super helpful for performing searches across modalities
• Can return the best caption given an image

• Has impressive capabilities for zero-shot adaptation to unseen tasks, without the need for
fine-tuning

CLIP Variants

• Objective function or pretraining
• Combining CLIP with label supervision

(BASIC, UniCL, LiT, MOFI)

• Contrastive + self-supervised image
representation learning

• Contrastive + Self-supervlised methods like
SimCLR (SLIP, DeCLIP, nCLIP)

• Contrastve + Masked Image Modeling (EVA, EVA-
02, MVP)

• Fine-grained matching loss (FILIP)

• Region-level pretraining (RegionCLIP, GLIP)

• Sigmoid loss for language-image pre-training
(SigCLIP)

Vision-Language Models: Toward generative models

• Architecture
• Dual encoders

• Encoder-decoder

• Fusion decoder

CLIP & its mentioned variants

SimVLM

Wang et al., “SimVLM: Simple Visual Language Model Pretraining with Weak Supervision”, ICLR 2022

Slowly moving from contrastive/discriminative to generative.

• Use mixed image-text and image-label
(JFT-3B) data for pre-training

• A generative branch for enhanced
performance and enabling new capabilities
(image captioning and VQA)

• CoCa aims to learn a better image encoder
from scratch

CoCa: Contrastive Captioner

Yu et al., “Coca: Contrastive captioners are image-text foundation models”, 2022

CoCa: Contrastive Captioner

• Use mixed image-text and image-label (JFT-3B)
data for pre-training

• A generative branch for enhanced performance
and enabling new capabilities (image captioning
and VQA)

• CoCa aims to learn a better image encoder from
scratch

Yu et al., “Coca: Contrastive captioners are image-text foundation models”, 2022

CoCa Architecture

• Unified single-encoder, dual-encoder, and
encoder-decoder paradigms

• one image-text foundation model with the
capabilities of all three approaches

• Cross-attention is omitted in unimodal decoder
layers to encode text-only representations

• Multimodal decoder cross-attending to image
encoder outputs to learn multimodal
representations.

Yu et al., “Coca: Contrastive captioners are image-text foundation models”, 2022

Frozen (Tsimpoukelli, Menick, Cabi, et al., 2021)

Kind of like MMBT but with a better LLM (T5) and a

better vision encoder (NF-ResNet).

Multi-Modal Few-Shot Learners!

80b param model based on Chinchilla.

Multi-image.

Flamingo (Alayrac et al., 2022)

Perceiver Resampler

Inject visual info directly into a frozen LM via cross-attention (remember FiLM?).

Gated XATTN

Original image from Karpathy as a

“visual Turing test” →

Why is this funny?

Architecture of Multimodal Models

Li et al., “Multimodal Foundation Models: From Specialists to General-Purpose Assistants”, 2023

Architecture of Multimodal Models

Li et al., “Multimodal Foundation Models: From Specialists to General-Purpose Assistants”, 2023

Q1: how to learn image representations?
Q2: how to extend vision models with more
flexible, promptable interfaces?

Q3: how to do image generation?

Q4: how to train multimodal LLM?
Q5: how to chain multimodal experts
with LLM?

Image
Encoder

Image
Generation

Consume visual data

Produce visual data

LLM for language understanding and generation

General-purpose interface

Teacher

https://llava-vl.github.io/

Haotian Liu*, Chunyuan Li*, Qingyang Wu, Yong JaeLee (* Equal contribution)

Self-Instruct with Strong Teacher LLMs But No Teacher is available on multiGPT4?

LLaMA Alpaca Vicuna

GPT-3.5 ShareGPT
(Human & GPT)

None

GPT-4

(text-only)

52K 700K
(70 conversions)

Instruction-

following

Data

GPT-4-LLM LLaVA

• 158K multimodal instruction following data

(First & High Quality)

GPT-4

(text-only)

Multimodal Chatbot
Large Language and Vision Assistant

Visual Instruction Tuning with GPT-4

• Rich Symbolic Representations of Images

• In-context-learning with a few manual examples

 Text-only GPT-4

GPT-assisted Visual Instruction Data Generation

Three type of instruction-following responses

GPT-assisted Visual Instruction Data Generation

❑ Architecture

LLaVA: Large Language-and-Vision Assistant

❑ Two-stage Training

•Stage1: Pre-training for Feature Alignment.

Only the projection matrix is updated, based on a subset of CC3M.

•Stage2: Fine-tuning End-to-End.Both the projection matrix and LLM are updated

•Visual Chat: Our generated multimodal instruction data for daily user-oriented applications.

•ScienceQA: Multimodal reasoning dataset for the science domain.

Example 1: Extreme Ironing

Example 2: Chicken Nugget Map

Strong Visual Reasoning Ability

31

Example 3: LLaVA

THANK YOU!
Questions?

	Slide 1
	Slide 2: About this training event
	Slide 3
	Slide 4
	Slide 5: Before starting…
	Slide 6
	Slide 7: THE ATTENTION OPERATOR
	Slide 8: A new operator
	Slide 9: Attention
	Slide 10: Attention
	Slide 11: Dot-product attention
	Slide 12: Convolution vs Self-attention
	Slide 13: CNNs vs RNNs vs Self-attention
	Slide 14: Multi-head Self-attention
	Slide 15: Positional encoding
	Slide 16: A Self-attentive language model for translation
	Slide 17: SCALING LAWS
	Slide 18: Training Transformers
	Slide 19: The trend
	Slide 20: Trend: the bigger, the better
	Slide 21
	Slide 22: Today…
	Slide 23: Scaling Laws
	Slide 24: Scaling Laws for Neural Language Models, Kaplan et al. 2020
	Slide 25: Kaplan et al., 2020 - Main Idea
	Slide 26: Kaplan et al., 2020 - Main Results
	Slide 27: TRANSFORMERS FOR VISION
	Slide 28: Idea: Standard Transformer on Pixels
	Slide 29: Idea: Standard Transformer on Pixels
	Slide 30: Idea: Standard Transformer on Pixels
	Slide 31: Idea: Standard Transformer on Patches
	Slide 32: Idea: Standard Transformer on Patches
	Slide 33: Idea: Standard Transformer on Patches
	Slide 34: Idea: Standard Transformer on Patches
	Slide 35: Idea: Standard Transformer on Patches
	Slide 36: Idea: Standard Transformer on Patches
	Slide 37: Idea: Standard Transformer on Patches
	Slide 38: Idea: Standard Transformer on Patches
	Slide 39: Vision Transformer (ViT)
	Slide 40: Vision Transformer (ViT)
	Slide 41: Vision Transformer (ViT)
	Slide 42: Vision Transformer (ViT)
	Slide 43: Vision Transformer (ViT)
	Slide 45: Improving ViT: Distillation
	Slide 46: Improving ViT: Distillation
	Slide 47: Improving ViT: Distillation
	Slide 48: Improving ViT: Distillation
	Slide 49: Improving ViT: Distillation
	Slide 50: Improving ViT: Distillation
	Slide 51: Improving ViT: Distillation
	Slide 52: ViT vs CNN
	Slide 53: ViT vs CNN
	Slide 54: ViT vs CNN
	Slide 55: Hierarchical ViT: Swin Transformer
	Slide 56: Hierarchical ViT: Swin Transformer
	Slide 57: Hierarchical ViT: Swin Transformer
	Slide 58: Hierarchical ViT: Swin Transformer
	Slide 59: Hierarchical ViT: Swin Transformer
	Slide 60: Hierarchical ViT: Swin Transformer
	Slide 61: Hierarchical ViT: Swin Transformer
	Slide 62: Hierarchical ViT: Swin Transformer
	Slide 63: Hierarchical ViT: Swin Transformer
	Slide 64: Swin Transformer: Window Attention
	Slide 65: Swin Transformer: Window Attention
	Slide 66: Swin Transformer: Window Attention
	Slide 67: Swin Transformer: Window Attention Problem: tokens only interact with other tokens within the same window; no communication across windows
	Slide 68: Swin Transformer: Shifted Window Attention Solution: Alternate between normal windows and shifted windows in successive Transformer blocks
	Slide 69: Swin Transformer: Shifted Window Attention
	Slide 70: Object Detection with Transformers: DETR
	Slide 71: Object Detection with Transformers: DETR
	Slide 72: Object Detection with Transformers: DETR
	Slide 73: Object Detection with Transformers: DETR
	Slide 74: Object Detection with Transformers: DETR
	Slide 75: Object Detection with Transformers: DETR
	Slide 76: Multimodal models
	Slide 77: What is multimodality?
	Slide 78
	Slide 79: CLIP: Models and Training Complexity
	Slide 80: Vision-language models: Contrastive learning
	Slide 81: CLIP Variants
	Slide 82: Vision-Language Models: Toward generative models
	Slide 83: SimVLM
	Slide 84: CoCa: Contrastive Captioner
	Slide 85: CoCa: Contrastive Captioner
	Slide 86: CoCa Architecture
	Slide 87
	Slide 88: Frozen (Tsimpoukelli, Menick, Cabi, et al., 2021)
	Slide 89: Flamingo (Alayrac et al., 2022)
	Slide 90: Perceiver Resampler
	Slide 91: Gated XATTN
	Slide 92: Why is this funny?
	Slide 93: Architecture of Multimodal Models
	Slide 94: Architecture of Multimodal Models
	Slide 95
	Slide 96: Visual Instruction Tuning with GPT-4
	Slide 97: GPT-assisted Visual Instruction Data Generation
	Slide 98: GPT-assisted Visual Instruction Data Generation
	Slide 99: LLaVA: Large Language-and-Vision Assistant
	Slide 100
	Slide 101: Strong Visual Reasoning Ability
	Slide 102
	Slide 103: THANK YOU! Questions?

